

Parametric Analysis of Candidate Configurations for Early Seastead Platforms

PART 1: PLATFORM CONFIGURATIONS AND COST ESTIMATES

PART 2: PLATFORM PERFORMANCE IN OCEAN ENVIRONMENT

George L. Petrie Director of Engineering, The Seasteading Institute Professor of Naval Architecture (retired)

MARCH 8, 2012

Our Mission: To further the establishment and growth of permanent, autonomous ocean communities, enabling innovation with new political and social systems.

Table of Contents

INTRODUCTION	. 2
OBJECTIVE	3

PART 1: PLATFORM CONFIGURATIONS AND COST ESTIMATES

SCOPE	5
SUMMARY OF CONFIGURATIONS CONSIDERED	7
General Approach and Assumptions	7
Baseline Accommodation Unit	8
Semi-Submersible Configurations	9
Ship-Shaped Configurations	12
Barge-Shaped Configurations	14
SUMMARY OF COST ESTIMATES	15
General Approach and Assumptions; Capital Expense (CapEx)	. 15
General Approach and Assumptions; Operating Expense (OpEx)	17
COST SUMMARIES AND COMPARISONS	19

PART 2: PLATFORM PERFORMANCE IN OCEAN ENVIRONMENT

ENVIRONMENTAL CONDITIONS	35
Wave Height, Period and Direction	35
Wind Speed and Current Speed	41
Water Depth	41
MOTION AMPLITUDES IN VARIOUS SEA CONDITIONS	45
General Approach	45
Ship-Shaped Configurations	46
Barge-Shaped Configurations	
Semi-Submersible Configurations	52
OPERATIONAL LIMITS AND PERFORMANCE ASSESSMENT	53
Limiting Motion Criteria	53
Dynamic Positioning Versus Mooring	54

CONCLUSIONS AND RECOMMENDATIONS	
---------------------------------	--

INTRODUCTION

The primary mission of The Seasteading Institute is to promote the establishment and growth of permanent, autonomous ocean communities, enabling innovation with new political and social systems. By opening a new frontier, we intend to revolutionize humanity's capacity to improve quality of life worldwide by creating laboratories for experimentation in governance and encouraging the development of new legal, political and social structures.

Initially, it is anticipated that these fledgling communities will need to accommodate relatively small populations of around 100 to 200 people. In the longer term, however, successful seastead communities will likely attract larger populations, growing incrementally into the thousands and potentially (in the very long term) into full-fledged cities at sea.

From the outset, it is clear that the technology exists to accommodate people living at sea for extended periods of time; offshore platforms and cruise ships are two obvious examples. But the requirements for a seastead are quite different. Ocean platforms are designed to house workers in an industrial work-place environment, where accommodations are simple and facilities are (to varying degrees) communal. Cruise ships, on the other hand, strive to offer luxurious accommodations, but guests are generally on-board for only a short period of time; like staying in a luxury hotel ashore, there is no sense of ownership or community. Moreover, cruise ships are intended to transport guests from one place to another. Cruising, by definition, implies the requirement for mobility, while at the same time offering a wide variety of activities for guests to indulge in while journeying between ports of call.

Seasteading, by contrast, is intended to foster a sense of community and long-term residency unlike any other sea-based entity. Perhaps the closest counterpart is the *ResidenSea* ship, an enterprise that is more akin to a cruise ship catering to an ultra-wealthy clientele. Costs to purchase a unit aboard *ResidenSea* (recently posted at \$600,000 for a 328-square-foot studio, or about \$1,800 per square foot) are in the same lofty stratosphere as prime real estate in Midtown Manhattan, not to mention monthly maintenance fees that begin at \$20,000 per month.

One of the challenges that will be critical for the success of the seasteading movement will be engineering a design solution that can be offered at a price per square foot that is comparable to upper-middle-class housing in the residential area of a typical mid-size American city. From pricing on Zillow.com, median prices for homes in the Los Angeles and New York metropolitan areas are in the range of \$240 to \$280 per square foot; before the bubble, those values were about \$300 to \$400 per square foot, respectively. Certainly, one would expect to pay a small premium for a home on the high seas; for sake of argument, we will assume seasteads should initially strive to meet a target price of not more than \$500 per square foot of residential floor space. With economies of scale, reductions of 20% or more from that figure should be achievable; future technological advancements offer the possibility of additional cost savings, putting seasteading within the reach of a much broader segment of the population.

OBJECTIVE

The purpose of this engineering analysis is to systematically evaluate several different seastead configurations (in a range of sizes) and to quantify their cost, capacity, and performance with particular emphasis on early seastead communities (as opposed to large future cities at sea). The results provided in Part 1 of this analysis will indicate the economies of scale that should be achievable for larger seasteads. Comparisons of expected performance in different operating scenarios are provided in Part 2, as a basis for deciding what platform is most appropriate for a particular set of operating requirements.

Part 1: **Platform Configurations** and Cost Estimates H 말만

[=]=]=]=]=]= 1 위 위 위 위

SCOPE

This analysis considers three different hull configurations, namely,

- Semi-submersible, column stabilized platforms similar to offshore drilling rigs
- Ship-shaped hull, similar in proportion and appearance to a cruise ship
- Barge-shaped hull, deckhouse similar to a cruise ship but a wider, shallower hull

In terms of initial cost, semi-submersibles are thought to be the most expensive configuration, while barge-shapes are the cheapest; however, for long-term habitability on the open ocean, semi-submersibles are superior to ship-shaped hulls, while barge-shaped platforms would be suitable only in relatively sheltered waters.

Each of these three platform configurations is evaluated for four different sizes, which are rather arbitrarily referred to as follows:

- Very-small; capacity of about 100 people
- Small; capacity of about 300 people
- Medium; capacity of about 1,000 people
- Large; capacity of as many as 5,000 people

The lower end of the range represents the population assumed to be the minimum size of an initial "offshore" seastead community, while at the upper end of the size range the population approaches that of a large commercial cruise ship.

Cost estimates are based on parameters that are typical of new construction in a modern Asian shipyard, using a consistent set of assumptions, so that fair comparisons can be made between various configurations, and economies of scale are revealed in an objective manner. *These cost estimates are intended primarily as a basis for comparison between alternatives*; cost factors vary significantly depending upon the shipyard's location (USA, Europe, Asia, etc.) and may fluctuate with changes in global demand for ship construction at any given time.

It is noted that submersible configurations are not considered within the scope of this analysis. Although this concept has a number of enthusiasts within the seasteading community, the focus of the present engineering evaluation was limited to proven configurations that are widely used for offshore accommodations and are therefore deemed as the most likely candidates for early seastead communities.

It is further noted that "single-family" seasteads are not considered within the scope of this analysis. Proponents of single-family seasteads should not feel slighted by this omission, but rather should bear in mind that one of the primary objectives of this analysis is to quantify the expected economies of scale by evaluating a series of configurations and sizes that vary in a systematic, parametric fashion; that is to say, the variations within each configuration exhibit a consistent proportional similitude.

Somewhere in the transition between "Very Small" multi-family seasteads considered in this analysis and a hypothetical single-family seastead, the parameters (and hence the proportionalities) change. For example, the allocation between residential and public spaces will probably be very different, even if one assumes the need for "public" spaces on a single-family seastead.

To address the question of single-family seasteads, it would be much more instructive to look at the plethora of configurations that are viable candidates in that size range; common examples might include houseboats (with either pontoon or scow-shaped bottoms), trawlers, sailboats, or a variety of other innovative designs. This would more rightly be the subject of a separate engineering analysis.

For prospective seastead residents of modest to average means, an initial target price of \$500 per square foot may seem daunting; that price translates into about \$300,000 for a modestly sized residence of only 600 square feet. It is noted that, for the sake of consistency, the cost estimates in this study are based on new construction, purpose-built to accommodate the requirements of a hypothetical seasteading community. Such vessels would typically be designed for a service life of 20 to 25 years, but would likely remain functional for a substantially longer period of time, given proper maintenance, much like quality new cars are built with the expectation that they will continue to provide good transportation long after the warranty has passed.

One feasible strategy for reducing the cost of early seastead communities is by acquiring an older vessel (most likely a cruise ship) and renovating/refurbishing it to improve its suitability as a platform for permanent residence. Like shopping for a good used car, finding the right vessel will take a good deal of searching, and any assessment of costs would be highly dependent on the specific vessel under consideration; hence the "used cruise ship" concept has not been considered in this parametric analysis, but is nonetheless considered a viable option that may be explored as part of our ongoing engineering research.

SUMMARY OF CONFIGURATIONS CONSIDERED

General Approach and Assumptions

It is anticipated that most residents of early seastead communities will opt for relatively small living spaces, much as the early settlers of North America were content with modest cabins as their first homesteads. More to the point, small living spaces are the norm for present-day residents of places such as Hong Kong and Singapore. Nonetheless, it is recognized that the residential units of a seastead must offer much more habitability than is found in the typical staterooms of a large cruise ship or the cabins on an offshore oil platform.

To cite a representative example, the majority of staterooms aboard the Royal Caribbean International cruise ship *Freedom of the Seas* offer living areas ranging from 150 to 250 square feet (roughly 14 to 23 m²); a bit smaller than an average-price standard hotel or motel room. Cabins on offshore oil rigs are even more spartan; typically just large enough for a pair of single berths, a dresser, desk, chair, shower and sink. Cruise ships and oil rigs can offer these modestly sized staterooms because it is assumed that their occupants will spend the majority of their waking hours elsewhere. Moreover, all meals will be prepared (and are usually consumed) in communal dining facilities.

Residents of a seastead, on the other hand, are expected to want to have a certain degree of autonomy in their lifestyle. It is anticipated that they may spend a significant portion of their waking hours in their staterooms; working, using computers, reading, watching TV, or engaged in other indoor leisure pursuits. Furthermore, it is assumed that each residential unit will have its own cooking facilities, including a refrigerator, sink, stove, cabinets and drawers. Additionally, since residents will be living aboard for much longer periods of time, they will require more closet space for clothing, and places to display the assorted items that make a space feel like home.

Accordingly, it is assumed that each residential unit will offer about 600 square feet (roughly 56 m^2) of living space; similar to the floor plan of a modest one-bedroom apartment with a galley kitchen, dining area/living room, computer alcove, walk-in closet and a bathroom with dual vanity and a full-size bathtub. An additional allowance of 10 percent is assumed for hallways, stairwells and elevators; thus the total number of residential units on each seastead configuration is based on about 650 square feet (roughly 60 m^2) per unit, or 325 square feet per person (double occupancy). This is about one-half the size of a modest 1,300-square-foot suburban home, which typically offers three bedrooms, two bathrooms, and comfortable accommodations for a family of four.

In addition, it is assumed that each seastead configuration will offer one or more decks that will serve as public areas for shops, offices, exercise facilities or other functions appropriate to the requirements of the seastead community. Depending on the configuration, these public areas may constitute as much as 30 to 40 percent of the total interior area. Furthermore, because they are considered to be potential revenue-producing spaces, they are included in the total area used as a basis for computing price-per-square-foot of capital and operating expenses.

Baseline Accommodation Unit

Arrangement of the residential decks is based on a hypothetical $30^{\circ}x20^{\circ}$ accommodation unit that provides 600 square feet (60 m²) of living space, as shown in the sketch below. Highlights of the layout include the following features:

- Entry foyer (3'x7') with large adjoining closet (2'x3')
- Galley-style kitchen (7'x9') with pass-through counter to dining area
 - Refrigerator-freezer (up to 21 ft^3) with icemaker
 - Four-burner electric stove with oven
 - Stainless steel sink
 - Built-in microwave oven
 - Nine feet of countertop space
 - Built-in cabinets over and under countertops
- Dining area (7'x12') with built-in seven-foot pantry/shelving unit
- Living room (10'x11') with built-in four-foot computer table
 - Six-foot convertible sleeper sofa with two end tables; 48" LCD HDTV opposite
 - Six-foot sliding glass door opening onto patio
- Open-air patio (5'x10')
- Master bedroom (10'x14') with queen/king bed (72"x84")
- Walk-in closet (5'x6')
- Bathroom (8'x11') with full-size tub, double sink, linen closet and separate W/C

This layout will comfortably accommodate a couple, with a convertible sofa for occasional overnight guests.

To provide roomier quarters, this layout lends itself to incremental expansion; using the same kitchen/dining/living room as the baseline unit, and adding additional 10' increments of width, a 30'x30' unit could offer two bedrooms and two bathrooms, while a 40'x30' layout might offer three bedrooms, two bathrooms, a small study and/or a second patio off the master bedroom.

Semi-Submersible Configurations

Unlike ships or barges, the semi-submersible lends itself quite naturally to a deck that is nearly square (similar dimension in length and beam) rather than relatively long and narrow. This offers both advantages and disadvantages.

The advantage is that a square-plan form is well suited to forming clusters of residences arranged side by side, with rows separated by wide "boulevards" that are intersected by somewhat narrower alleyways. Residences can thus be arranged in clusters of "micro-neighborhoods" that will tend to foster a feeling of community among residents.

The disadvantage is that if the deckhouse occupies more than 60 percent of the total deck area, it will make the superstructure look and feel like a tenement or cell block, with only a fraction of the units offering exposure to direct sunlight and fresh air. Conceptual arrangements shown in Figures 2a-d illustrate layouts that provide natural light and air to all units for four different sized semi-submersibles, as shown in Table 1, below. Ideally, not more than 50 to 60 percent of total deck space should be utilized for superstructure; however, it is noted that higher density accommodation layouts may constitute an acceptable path to reducing the cost per square foot for seastead communities.

As a baseline for this parametric study, it is assumed that 50 percent of total deck space is used for superstructure, i.e., for all interior public spaces and for residential units as described in the preceding section of this report. Results presented in the following chapter of this report show the cost implications that arise from this assumption, as well as the effects of higher (60, 75 and 85 percent) and lower (40 percent) deck space utilization.

	Enclosed	Percent of Area	Number of	Total	No. of	Total
Deck Size	Area/Deck	Used for	Accommodation	Number of	Res.	No. of
	(sq. feet)	Superstructure	Units [*] Per Deck	Residents ^{**}	Decks	Res.
		-		Per Deck		
200' x 200'	23,760	59.4 %	34	68	2	136
300' x 300'	51,480	57.2 %	72	144	3	432
400' x 400'	95,040	59.4 %	128	256	4	1,024
500' x 500'	151,800	60.7 %	200	400	5	2,000

Table 1 – Semi-Submersible Deck Configurations

^{*}refers to the 600-square-foot baseline accommodation unit described in the previous section ^{**}assumes two residents per accommodation unit

Virtually all semi-submersibles have slender vertical columns located at or near the corners of the deck, perhaps with additional columns located along the sides or across the ends. These columns provide stability for the hull and support for the topside structure. The columns are sometimes circular in cross-section, for ease of fabrication and to reduce hydrodynamic drag; this is often the case in semi-submersible rigs of older design. The alternative is to use columns with a square or rectangular cross-section, because this offers superior static stability per unit of total water plane area; this is the configuration assumed in this analysis. The ramifications of this design aspect will be discussed in considerably more detail in Part 2 of this report.

A majority of the buoyant force that keeps the hull afloat is provided by pontoons positioned beneath the columns. In some instances (as depicted, for example, in the ClubStead report, http://seasteading.org/mission/additionalreading/clubstead) these "pontoons" are individual "buoyancy pods" affixed to the base of each column. More typically, however, there are two pontoons that extend fore and aft along either side of the rig; in normal operation, the hull is ballasted so that the pontoons are deeply submerged. For transit, the hull is de-ballasted so that the columns are completely above the water; the long slender pontoons are only partially submerged, enabling the semi-submersible hull to reach transit speeds of 10 knots or better without excessive power demand.

For large semi-submersibles, significant hydrodynamic forces can occur that tend to "pry" the pontoons apart at the base of the columns, not unlike trying to break the wishbone of a turkey. To resist these forces, it is often necessary to use large diagonal "struts" to brace the columns; these are generally costly to fabricate, and the structural joints connecting the columns to the struts are a source of vulnerability in terms of potential long-term fatigue.

Rather than using a pair of pontoons for buoyancy (twin-pontoon), some configurations use a "ring pontoon" that runs fore and aft as well as side to side, binding the base of the columns like a giant steel belt and eliminating the need for diagonal struts. Not only is this configuration cheaper to build, it offers greater structural efficiency and better resistance to fatigue. The disadvantage is that the ring pontoon creates much higher drag; this has a strong impact on rig mobility considerations, and may also increase the power required for a dynamically positioned (DP) vessel to maintain a stationary position.

Twin-pontoon semi-submersible

Ring-pontoon semi-submersible

For a moored semi-submersible, it is assumed that mobility and transit speed are of secondary importance, suggesting that the ring pontoon configuration would generally be preferable. This is the configuration used as a baseline for this analysis; the cost differential associated with a more conventional twin-pontoon configuration is addressed in the summary of costs section of this report, as are the additional costs of a DP capability. Buoyancy pods (as depicted in the ClubStead report) combine negative aspects of both types of pontoon configuration; high drag, and thus limited mobility (like the ring pontoon) along with the need for diagonal struts (as with twin pontoons), therefore "pod" configurations are not considered in this analysis.

Ship-Shaped Configurations

Compared to semi-submersibles and barges, ships are long and slender; hull length is typically about seven times the maximum beam dimension. These proportions (combined with tapered bow and stern sections) produce very favorable resistance characteristics for ship-shaped hulls, allowing them to easily achieve transit speeds of 15 to 20 knots or more with reasonable power. However, the relatively narrow beam makes the hull vulnerable to rolling motions, especially in beam seas, when significant wave energy is imparted to the sides of the ship at frequencies that coincide with the resonant frequency of the ship in roll.

Various roll stabilization methods are employed in different types of ships; commercial cruise liners most commonly use some sort of active fin stabilization system. While these systems are very effective in moderate sea states when the ship is underway, fin stabilizers are of minimal efficacy when the ship is at anchor. For cruise ships, this is not a problem because anchorages are generally in harbors or other protected waters. But for a seastead platform in open waters, it is important that the ship avoid (or at least minimize) exposure to beam seas.

The need to minimize exposure to beam seas can impose severe constraints on the design of a ship-shaped seastead, and on the geographic locations in which the seastead can be expected to operate without exceeding allowable roll motion criteria. In areas where the waves are predominantly from a single direction, a ship could be moored in an orientation that faces into the prevailing seas, but such locations are rare. In areas where wave direction is more variable, the ship could use some form of turret mooring system (much more expensive than a simple spread mooring), where mooring cables connect to a single rotatable point on the ship. Alternatively, the ship could rely on dynamic positioning to maintain its desired location. Putting aside the capital cost implications of either a turret mooring or a dynamic positioning system, it is common in the open ocean for multiple wave systems to occur simultaneously, typically long swells in one direction, originating from a distant storm, along with shorter wind-driven waves in line with the prevailing wind. It is noted that the latter may change direction throughout the day, as local wind conditions develop. Thus, even for a vessel with dynamic positioning, it may be difficult or even impossible to avoid wave excitation on the beam.

A quantitative performance assessment of these considerations is presented in Part 2 of this report. The cost implications of mooring versus dynamic positioning are demonstrated in the cost estimate sections of Part 1.

The long, slender proportions of a ship-shaped hull dictate an accommodation arrangement that is different from the semi-submersible. Similar to the staterooms on a cruise ship, the residential units on a ship-shaped seastead will most likely be arranged along either side of a long corridor that runs lengthwise along the ship. Depending on the width of the ships, there may be more than one of these interior corridors, and the proportions of the baseline unit (shown previously in Figure 1) will change slightly to facilitate placement of a maximum number of units across the width of the deckhouse. Figure 3 illustrates possible deck layouts for each of the four ships; properties of each are summarized in Table 2.

Figure 3 – Assumed Accommodation Unit Layout for Four Ship-Shaped Seasteads Each unit is approximately 600 square feet

	Tuble 2 Deek configurations for Ship Shaped Seasteads									
Ship	Ship	Deckhouse	No. of	No. of	Total	Total No.	No. of	Total		
Length	Beam	Length [*]	Inside	Outside	Units/	of Res./	Res.	No.		
(feet)	(feet)	(feet)	Units	Units	Deck	Deck	Decks	Res.		
225	45	190	0	12	12	24	3	72		
450	75	380	0	42	42	84	4	336		
750	105	640	36	62	98	196	6	1,176		
1,050	170	890	132	88	220	440	9	3,960		

Table 2 – Deck Configurations for Ship-Shaped Seasteads

*Deckhouse length is assumed equal to 85% of ship length, as is typical for a cruise ship deck

Barge-Shaped Configurations

The distinction between barges and ships is largely based on proportions. Barges typically have a more rectangular form, with a blunt bow shape and hull approximately four times the length of the beam. Moreover, barges typically have proportionally shallower drafts (the distance from the water line to the keel) than ships. These characteristics arise from the fact that barges are usually required to carry heavy loads of cargo at relatively slow speeds. In addition, the shallow draft is intended to allow barges to ply shallower coastal or inland waters, and while it is noted that there are classes of ocean-going barges with proportions that are slightly more ship-like, there is still a relatively clear distinction between the two types of vessels. And while most barges are not self-powered, there are nonetheless many *self-propelled* barges; thus it is principally a matter of proportion and form rather than propulsion that distinguishes barges from ships.

Because of their characteristically blunt bow and full-bodied hull form, barges are typically able to achieve a transit speed of about six knots; faster than a semi-submersible with buoyancy pods or a ring-pontoon configuration, but slower than a twin-pontoon semi-submersible, and much slower than a ship-shaped hull. However, the most detrimental characteristic of a barge-shaped hull is its broad beam and shallow draft, which typically gives barges too much static stability, i.e., excessive "metacentric height". As a result, the natural period for roll motion of a barge is often in the range of 6 to 12 seconds, coinciding with the dominant period of the most commonly occurring ocean waves. This makes barges particularly vulnerable to excessive roll motion in all but the most benign sea conditions, as will be presented in Part 2 of this report.

It is noted that typical barge proportions (4:1) are squarely between those of a ship (7:1) and a semi-submersible (1:1); accordingly, the percentage of deck space allocated to superstructure is assumed to be 75 percent, approximately midway between the 85 percent assumed for ship-shapes and the maximum of 60 percent for semi-submersibles. It is further assumed that accommodation units will be arranged in rectangular modules running side to side across the ship, with each row of modules separated by a pedestrian walkway; similar to that shown in Figure 3 for the 450' ship, but oriented laterally rather than longitudinally. The fore and aft dimension of each accommodation block would be approximately 66' (two 20'x30' modules with a 6' hallway between); the 75 percent utilization factor would thus allow for a 22' open walkway between each row of modules. As a side benefit of this arrangement, all residences will have an exterior view and an open-air patio.

Tuble 5 Deek configurations for Darge Shaped Seasteads								
Barge	Barge	Deckhouse	Deckhouse	Deckhouse	Total	Total	No. of	Total
Length	Beam	Length [*]	Width	Area	Units/	No. of	Res.	No.
(feet)	(feet)	(feet)	(feet)	(ft^2)	Deck	Res./	Decks	Res.
						Deck		
195	35	158	30	4,740	7	14	2	28
315	75	294	60	17,640	24	48	4	192
625	150	588	130	76,440	112	224	8	1,792
935	225	850	210	178,500	250	500	12	6,000

Table 3 – Deck Configurations for Barge-Shaped Seasteads

^{*}Total deckhouse length is assumed equal to 75 percent of barge length.

SUMMARY OF COST ESTIMATES

General Approach and Assumptions; Capital Expense (CapEx)

All costs are estimated parametrically, based on the methodology described below. Using a consistent set of cost assumptions ensures that comparisons between alternatives will be valid. Cost factors cited below are based on construction in an Asian shipyard. Capital costs include allowance for installation, but do not include transit from the shipyard to the deployment site. All costs cited below are in US dollars.

Costs for hull steel and deckhouse are based on dollars per long-ton (\$/LT) of steel weight, as is the customary basis for estimating all shipbuilding cost. Weight estimates, in turn, are based on well-developed formulas for estimating steel weight as a function of hull form and hull volume, i.e., the product of length, beam, depth and an appropriate "form coefficient".

The allowance for accommodation cost corresponds to about \$150 per square foot, to include all interior finish, plumbing, electrical, heating, ventilation, air conditioning, etc. in each unit. While this figure may seem high in comparison to residential construction ashore, standards for offshore dwelling units are more stringent than their shore-based counterparts, especially with regard to specifications related to safety in general, and fire resistance in particular.

Parameters for other cost items are identified in the remainder of this section. Values are based on current quotes for propulsion, mechanical and electrical systems on the basis of cost per kW, or other broadly recognized basis.

To establish a level of confidence in these cost estimates, two completely independent studies were developed, one within The Seasteading Institute and the second by an independent contractor; the estimates generally agreed with each other within about 10 to 15 percent. To be conservative, the values reported herein are based on the higher of the estimates.

Hull Steel Cost

- Semi-submersibles: \$10,000/LT because of complicated geometry
- Ship-shape: \$9,000/LT for very small; \$7,000/LT for small; \$6,000/LT for large ship
- Barge-shape: \$7,000/LT for very small; \$6,000/LT for small; \$5,000/LT for large barge

Deckhouse Cost

- Semi-submersibles: \$7,000/LT irrespective of size; same for main deck structure
- Ship-shape: \$7,000/LT for very small; \$6,000/LT for small; \$5,000/LT for large ship
- Barge-shape: \$6,000/LT for very small; \$6,000/LT for small; \$5,000/LT for large barge

Accommodation Cost

• Allow \$50,000 per passenger; \$100,000 per 600 ft² residential unit; about \$150/ft² Includes all interior finish, plumbing, electrical and HVAC for accommodation spaces

Propulsion System Cost

• Main engines and DP thrusters: \$550/kW

Mechanical System Cost

- Semi-submersible: 10x Propulsion system cost + \$15,000 per foot of platform length
- Ship and Barge: 3x Propulsion system cost

Electrical System Cost

• Based on Total Generating Capacity: \$1,300/kW

Engineering Cost

• Flat 7% of Hull, Deckhouse and Accommodation Cost

Program Management Cost

• Flat 3% of Hull, Deckhouse, Accommodation and Mooring Cost

Mooring Cost

- Semi-submersible: Baseline is \$8,000,000 for 200'x200' rig in 1,000-foot depth Scale in proportion to (Length/200)^{1.5} for larger rigs
- Ship-shape: Baseline is \$3,000,000 for 225' ship in 1,000-foot depth Scale in proportion to (Length/225)^{2/3} for larger ships
- Barge-shape: Baseline is \$3,000,000 for 195' barge in 1,000-foot depth Scale in proportion to (Length/195)^{2/3} for larger barges
- Variation with depth: (same for all vessel configurations)
 - At 1,000 feet, about 40% of cost is for mooring equipment This component will increase by 5% for each additional 1,000 feet
 - At 1,000 feet, about 60% of cost is for anchor line This component will increase linearly with depth beyond 1,000 feet
 - Example:
 - For 200'x200' semi-submersible, baseline = \$8.0M for 1,000 foot depth
 - Equipment cost = 40% (\$3.2M) for baseline 1,000 foot depth Equipment cost increases 5% (0.05x\$3.2M) = \$160,000 per 1,000 feet
 - Anchor line cost = 60% (\$4.8M) for baseline 1,000 foot depth Anchor line cost increases linearly with depth = \$4.8M per 1,000 feet
 - Thus for 200'x200' semi-submersible in 2,000 foot depth Cost is \$8.0M + \$4.8M + \$0.160M = \$12.96M
 - For 200'x200' semi-submersible in "D"-thousand foot depth Cost is \$8.0M + [(D-1) x \$4.8M] + [(D-1) x \$0.160M]
 - For semis, ships and barges of any length:
 - First scale the "baseline cost" to length, as specified above
 - Then apply 60% and 40% factors to account for depth as per example

General Approach and Assumptions; Operating Expense (OpEx)

The following components of operating expense are included in this analysis:

- Crew Cost
 - Moored Semi-submersible; Minimum of one licensed officer plus two crew
 - DP Semi-submersible; Minimum of three licensed officers plus six crew
 - Ship, either moored or DP; Minimum of three licensed officers plus nine crew
 - Barge, self-propelled; Same as ship
 - Barge, non-self-propelled; Same as semi-submersible (Moored or DP)
- Maintenance
 - Hull inspection and survey for classification
 - Hull painting and protection
 - Deckhouse exterior painting and coating
 - Mechanical system maintenance and repair
- Insurance
 - Liability
 - o Hull and Machinery
- Fuel Cost (excluding transit operations)
 - Electrical power generation (housekeeping loads)
 - Dynamic positioning power requirements

Crew salaries were obtained from a recently published survey of average monthly salaries paid by major operators in the cruise ship industry. Table 4 summarizes the manning and salaries assumed in this analysis:

		(-		-)		
Annual	Semi	Semi	Ship	Ship	Barge	Barge
Salary	moored	DP	moored	DP	moored	DP
Captain		84,000	84,000	84,000		84,000
1 st Officer	48,000	48,000	48,000	48,000	48,000	48,000
2 nd Officer		36,000	36,000	36,000		36,000
3 rd Officer			24,000	24,000		
1 st Engineer		72,000	72,000	72,000		72,000
2 nd Engineer		48,000	48,000	48,000		48,000
3 rd Engineer			36,000	36,000		
Bosun	24,000	24,000	24,000	24,000	24,000	24,000
Seaman	18,000	18,000	18,000	18,000	18,000	18,000
Seaman		18,000	18,000	18,000		18,000
Engineman		21,000	21,000	21,000		21,000
Engineman		21,000	21,000	21,000		21,000
Total	90,000	390,000	450,000	450,000	90,000	390,000

Table 4 – Manning Assumptions and Crew Salaries (in US dollars)

Estimates of maintenance costs are based on review of several published reports for a variety of ship types; not surprisingly, there is considerable variance in the published data. As a basis for this analysis, it was assumed that annual maintenance costs for the hull and deckhouse would be about 1 percent of the initial construction cost. This assumption is borne out by a detailed study of deep-draft ocean-going vessel operating costs conducted by the US Army Corps of Engineers for the period from 2004 to 2007. Recognizing the possibility that DP systems may require additional levels of maintenance, an additional margin of 0.25 percent was included for DP vessels.

Estimates of insurance cost were obtained from several published reports, and the figures for insurance were consistently equal to about 1% of initial construction cost.

Fuel cost is comprised of two major components; electrical power generation for housekeeping loads and dynamic positioning requirements. For housekeeping loads, the maximum generating capacity is based on 4.5-kW per person; to estimate fuel consumption, it is assumed that the average power load is approximately 50% of capacity, or an average consumption of 2.25-kW per person. This rate corresponds to slightly less than 20,000-kWh per year; this is higher than the national average of about 12,000-kWh per year, but not unreasonable considering that the seastead will have "housekeeping" requirements in addition to that required for the residential accommodations. Published data indicates that diesel generators consume about 72 gallons per hour per 1,000-kW of electricity produced; thus to produce 20,000-kWh per year. At current prices for marine diesel (assuming \$5.00 per gallon, delivered) this would result in an annual fuel cost of about \$7,200 per person.

For seasteads that utilize dynamic positioning systems, power must continually be applied to the thrusters to hold the vessel on location. Required power is highly dependent on average wind speed and current speed at the chosen location. For the purposes of this analysis, it is assumed that the seastead must withstand the combined effect of 1-knot current and 20-knot wind, on average. The corresponding drag forces on the hull and deckhouse are computed for each configuration, using appropriate drag coefficients, to obtain the total force that must be overcome by the thrusters. Using a nominal thruster efficiency (35-lb per horsepower), the average thruster power (converted to kW) is determined, from which the corresponding fuel consumption is obtained, as described in the preceding paragraph. For the wind and current conditions assumed, the fuel required for dynamic positioning is potentially greater than that required for housekeeping; in any event, it is concluded that fuel costs are likely to be a major component in the operating costs of a seastead.

COST SUMMARIES AND COMPARISONS

A top-level summary of costs for each configuration is given in Table 5 below. Detailed tables and graphs are provided in the remainder of this report for each configuration considered.

All configurations exhibit substantial economies of scale; for example, the cost per square foot for the baseline semi-submersible is \$832 for the 200'x200' configuration, decreasing to \$503 for the 500'x500' version.

The smallest semi-submersible considered (200'x200') has a construction cost of about \$66M, with the capacity to accommodate 136 people. The cost of a 600-square-foot residential unit would be approximately \$540,000.

By comparison, the smallest ship-shape (225' long) has a construction cost of only about \$20M, with the capacity to accommodate 72 people. The cost of a 600-square-foot residential unit would be approximately \$375,000.

Configuration	Length	Beam	No. of	Total Cost	Cost per	Cost per
C	(feet)	(feet)	People	\$US	Sq. Foot*	Res.
			-		-	Unit**
Baseline	200	200	136	\$66.6M	\$832	\$540K
Semi-						
submersible						
	300	300	432	\$131.3M	\$584	\$379K
	400	400	1,024	\$256.6M	\$535	\$347K
	500	500	2,000	\$440.0M	\$503	\$327K
Ship-shape	225	45	72	\$19.9M	\$578	\$375K
	450	75	336	\$82.7M	\$481	\$312K
	750	105	1,176	\$236.0M	\$438	\$285K
	1,050	170	3,960	\$702.0M	\$386	\$250K
Barge-shape	195	35	28	\$10.6M	\$691	\$449K
	312	75	192	\$47.5M	\$450	\$293K
	625	150	1792	\$291.2M	\$377	\$245K
	935	225	6000	\$903.6M	\$358	\$232K

Table 5 – Summary of Estimated Construction Costs

*assumes that the total cost is amortized over the total interior area, residential plus retail *cost of each residential unit includes associated "common area," i.e., hallway, stairs, elevator

Graphs illustrating trends in CapEx and OpEx for a range of seastead sizes are provided in the following set of Figures, 4a-c and 5a-d. Detailed tabulations for each configuration are included as Tables 6a-e, 7, and 8.

Figure 4a - CapEx Comparison for all Semi-submersible seasteads

Figure 4b - CapEx Comparison for all Ship-shape seasteads

Figure 4c - CapEx Comparison for all Barge-shape seasteads

Figure 5b - OpEx Comparison for DP Semi-submersible seasteads

Figure 5c - OpEx Comparison for Ship-shape seasteads; moored and DP

Figure 5d - OpEx Comparison for Barge-shape seasteads; moored and DP

Table 6a - Baseline Configuration – 50% Utilization of Deck Area

		LBP (feet)		200		300		400		500	
		Beam (feet)		200		300		400		500	
		Draft (feet)		70		70		75		80	
		Air Gap (feet)		40		40		40		40	
		Depth (feet)		110		110		115		120	
		Total Hull Volume (ft^3)		476,800		572,800		1,106,440		1,947,480	
US\$/LT	10,000	Hull Steel Cost		\$22,857,143		\$28,000,000		\$54,049,429		\$90,600,714	
US\$/LT	7,000	Deckhouse Cost		\$11,812,500		\$32,273,438		\$67,500,000		\$121,289,063	
US\$/LT	7,000	Main Deck Cost	_	\$5,500,000		\$12,375,000		\$22,000,000		\$34,375,000	
US\$/pax	50.000	Accommodation Cost		\$9.230.769		\$27.692.308		\$61.538.462		\$115.384.615	
US\$		Mooring System Cost		\$8,000,000		\$14,696,938		\$22,627,417		\$31,622,777	
US\$/kW	550	Propulsion System Cost		\$0		\$0		\$0		ŚO	
USŚ		Mechanical System Cost		\$3,000,000		\$4,500,000		\$6,000,000		\$7,500,000	
US\$/kW	350	Electrical System Cost	_	\$726,923		\$2,453,365		\$5,815,385		\$11,358,173	
	7.0%	Engineering Cost	_	\$2 811 875		\$5,085,391	_	\$10,048,460		\$17 238 534	
	3.0%	Program Mgmt Cost	_	\$1 445 089		\$2,620,361	_	\$4 985 305		\$8 336 627	
US\$/day	200.000	Installation Days / Cost	6	\$1,74,5,005	8	\$1,600,000	10	\$2,000,000	12	\$2,400,000	
03 <i>3/</i> uay	200,000	installation Days / Cost	0	\$1,200,000	0	\$1,000,000	10	\$2,000,000	12	\$2,400,000	
		Total Cost Jess transport		\$66 584 200		\$131 206 801	_	\$256 564 457		\$440 105 503	
				J00, J04, 299		\$151,250,801	_	\$230,304,437		Ş440,105,505	
		Interior Public Area (ftA2)		40.000		90,000		160.000		250,000	
		Residential Area (ftA2)		40,000		125,000		220,000		625,000	
		Total Interior Area (ftA2)		40,000		155,000		320,000		825,000	
		Total Interior Area (11-2)		80,000		223,000		480,000		873,000	
		Cost per square foot	_	\$832		\$584		\$535		\$503	
		Cost per residence unit	_	\$540.997	_	\$379 302		\$3/7 /31		\$326.936	
		cost per residence unit		Ş540,997		<i>3373,3</i> 02		JJ47,4JI		<i>Ş</i> 320,930	
		Percentage Public Area		50.0%		40.0%		33.3%		28.6%	
		Percentage Residential		50.0%	_	60.0%		66.7%		71 4%	
		l'electridge Residential		50.070	_	00.070		00.770		71.470	
		Annual Crew Cost - moored		\$90,000	_	\$90,000		\$90,000		\$90,000	
		Annual Crew Cost - DP		\$450,000	_	\$450,000		\$450,000		\$450,000	
				Ş 4 50,000	_	Ş 4 50,000		Ş 4 50,000		Ş 4 30,000	
% CapEx	1.00%	Maintenance Cost - moored		\$665,843		\$1,312,968		\$2,565,645		\$4,401,055	
% CanEx	1 25%	Maintenance Cost - DP		\$832 304	_	\$1 641 210	_	\$3,207,056		\$5 501 319	
70 Cupex	1.2370			<i>\$052,504</i>		<i><i>(</i>),011,210</i>		\$3,207,030		\$3,301,313	
% CanEx	0 75%	Insurance Cost - Liability		\$199 382		\$984 726		\$1 924 233		\$3 300 791	
% CanEx	0.75%	Insurance Cost - Hull/Mach		\$166.461		\$378 747		\$6/1 /11		\$1,100,264	
70 COPEX	0.23/0			Ş100,401		<i>3320,242</i>		Ş041,411		Ş1,100,20 4	
heoloy	50%			277		025	_	2 215		1 3 7 7	
Avg Loau	5070	Average DP Thrusters kW		063		1 288	_	1 01/		2 762	
mb/1000kW	72	Appual Fuel Purp House		174 661		1,200 E90,491		1,914		2,702	
gp11/1000kW	72	Annual Fuel Burn DD		174,001		569,461		1,397,267		2,729,077	
Sph/ 1000k W	/Z	Annual Fuel Cast use and		6072,044		62 047 402		1,200,955		1,742,238	
Fuel Price	\$5.00	Annual Fuel Cost - Moored		\$873,305		\$2,947,403		\$6,986,437		\$13,645,385	
Fuel Price	\$5.00	Annual Fuel Cost - DP		\$3,911,524		\$7,009,017		\$13,021,212		\$22,356,574	
		Total Annual Cast maarad		\$2 204 001		¢5 662 220		¢12 207 720		622 E27 40E	
		Total Annual Cost - moored		\$2,294,991		\$5,003,339		\$12,207,726		\$22,537,495	
		Total Annual COST - DP		7,9,958,55		\$10,413,195		\$19,243,912		ş32,708,947	
		OnEx per sa foot moored		620 60		Ć7E 17		¢7E /12		¢75 76	
		Opex per sq-toot - moored		۲۵.03 ختی مح		\$23.11 ¢16 70		,223.43 ¢40.00		ې۲.22 د جرې	
_		OpEx per sq-1001 - DP		\$/3.25		\$40.28		\$40.09 \$16 F21		237.38 616 742	
-		OpEx per res. unit - moored		\$18,047		¢20,022		\$10,531		\$10,742	
		Opex per res. unit - DP		Ş47,610		23U,U83		Ş26,059		ŞZ4,Z98	

Table 6b - Larger Deckhouse Footprint – 60% Utilization of Deck Area

		LBP (feet)		200		300		400		500	
		Beam (feet)		200		300		400		500	
		Draft (feet)		70		70		75		80	
		Air Gap (feet)		40		40		40		40	
		Depth (feet)		110		110		115		120	
		Total Hull Volume (ft^3)		476,800		572,800		1,106,440		1,947,480	
US\$/LT	10,000	Hull Steel Cost		\$22,857,143		\$28,000,000		\$54,049,429		\$90,600,714	
US\$/LT	7,000	Deckhouse Cost		\$14,175,000		\$38,728,125		\$81,000,000		\$145,546,875	
US\$/LT	7,000	Main Deck Cost		\$4,400,000		\$9,900,000		\$17,600,000		\$27,500,000	
US\$/pax	50,000	Accommodation Cost		\$11,076,923		\$33,230,769		\$73,846,154		\$138,461,538	
US\$		Mooring System Cost		\$8,000,000		\$14,696,938		\$22,627,417		\$31,622,777	
US\$/kW	550	Propulsion System Cost		\$0		\$0		\$0		\$0	
US\$		Mechanical System Cost		\$3,000,000		\$4,500,000		\$6,000,000		\$7,500,000	
US\$/kW	350	Electrical System Cost		\$872,308		\$2,944,038		\$6,978,462		\$13,629,808	
US\$	7.0%	Engineering Cost		\$2,900,250		\$5,363,969		\$10,685,460		\$18,455,331	
US\$	3.0%	Program Mgmt Cost		\$1,482,964		\$2,739,752		\$5,258,305		\$8,858,111	
US\$/dav	200.000	Installation Days / Cost	6	\$1.200.000	8	\$1.600.000	10	\$2.000.000	12	\$2.400.000	
+//			-	+_,,		+_,,		+_,,		+_,,	
		Total Cost, less transport		\$69,964,588		\$141,703,592	_	\$280,045,226		\$484,575,154	
				<i>ç</i> 03/30 1/300		<i>\</i>	_	<i>\\</i> 200)010/220		¢ 10 1j07 0j20 1	
		Interior Public Area (ft^2)		48 000		108 000	_	192 000		300.000	
		Residential Area (ft^2)		48,000		162,000	_	384,000		750,000	
		Total Interior Area (ft^2)	_	96,000		270,000		576,000		1 050 000	
				50,000		270,000	_	370,000		1,050,000	
		Cost per square foot		\$729		\$525	_	\$486		\$462	
		Cost per residence unit		\$473 719		\$341 138		\$316.023		\$299 975	
				<i>Q1</i> , <i>3</i> , <i>7</i> ± <i>3</i>		<i>\$</i> 541,150		<i>\$</i> 510,025		<i>\$233,313</i>	
		Percentage Public Area		50.0%		40.0%		33,3%		28.6%	
		Percentage Residential	_	50.0%		60.0%		66.7%		71.4%	
				50.070		001070		001770		, 11, 17, 0	
		Annual Crew Cost - moored	_	\$90,000		\$90,000		\$90,000		\$90,000	
		Annual Crew Cost - DP		\$450,000		\$450,000		\$450,000		\$450,000	
				÷150,000		\$130,000		<i>Q</i> 130,000		Ç-130,000	
% CanEx	1 00%	Maintenance Cost - moored		\$699 646		\$1 417 036		\$2 800 452		\$4 845 752	
% CapEx	1 25%	Maintenance Cost - DP		\$874 557		\$1,771,295		\$3 500 565		\$6,057,189	
70 CupEx	1.2370			<i>QUI 1,001</i>		<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\$3,300,303		\$0,037,105	
% CanEx	0.75%	Insurance Cost - Liability		\$524 734		\$1.062.777		\$2 100 339		\$3 634 314	
% CapEx	0.75%	Insurance Cost - Hull/Mach	-	\$174 911		\$354 259		\$700 113		\$1 211 438	
70 COPEX	0.2370		-	<i><i>↓1</i>, <i>↓, <i>511</i></i></i>		<i>\$334,233</i>		<i>\$</i> 700,113		Ş1,211,430	
Avgload	50%	Average Housekeeping kW	-	332		1 122		2 658		5 192	
AVE LOUG	5070	Average DP Thrusters kW/	-	963		1,122	-	1 01/		2 762	
mb/1000kW/	72	Appual Eucl Purp House		200 502		707 277	_	1 676 745		2,702	
ph/1000kW	72	Annual Fuel Burn DB		607 644		912 222	_	1,070,743		3,274,892	
Fuel Drice	ζ <u>τ</u> 00	Annual Fuel Cast maarad		\$1.047.066		612,525		1,200,955		\$16,742,238	
Fuel Price	\$5.00 ¢E.00	Annual Fuel Cost - Moored	_	\$1,047,900		\$3,550,664		\$0,303,724		\$10,574,402	
FuerPrice	Ş5.00	Annual Fuel Cost - DP		\$4,060,165		\$7,596,497		\$14,410,499		\$25,065,051	
_		Total Annual Cost maarad		62 527 257		\$6.460.0E6		\$14 074 COD		626 1EE 06E	
		Total Annual Cost - moored	_	\$2,337,237		\$0,400,950		\$14,074,029		\$20,100,900	
		Total Annual COST - DP		30,110,388		\$11,236,828		\$21,109,517		əso,438,591	
		OnEv nor ca fast mass-1		60C 40		633 03		624.44		674.04	
		OpEx per sq-toot - moored		\$26.43		\$23.93		\$24.44		\$24.91	
		Opex per sq-toot - DP		\$63.65		\$41.62		\$36.75		\$34.70	
		OpEx per res. unit - moored		\$17,179		\$15,554		\$15,883		\$16,192	
		OpEx per res. unit - DP		\$41,372		\$27,052		\$23,889		\$22,557	

Table 6c - Smaller Deckhouse Footprint – 40% Utilization of Deck Area

		LBP (feet)		200		300		400		500
		Beam (feet)		200		300		400		500
		Draft (feet)		70		70		75		80
		Air Gap (feet)		40		40		40		40
		Depth (feet)		110		110		115		120
		Total Hull Volume (ft^3)		476,800		572,800		1,106,440		1,947,480
		· /								
US\$/LT	10.000	Hull Steel Cost	Śź	22.857.143		\$28.000.000		\$54.049.429		\$90.600.714
US\$/LT	7.000	Deckhouse Cost		\$9.450.000		\$25.818.750		\$54.000.000		\$97.031.250
US\$/LT	7.000	Main Deck Cost		\$6.600.000	_	\$14.850.000		\$26,400,000		\$41.250.000
US\$/pax	50.000	Accommodation Cost		\$7.384.615		\$22,153,846		\$49,230,769		\$92,307,692
USŚ	,	Mooring System Cost		\$8.000.000	_	\$14.696.938		\$22.627.417		\$31.622.777
US\$/kW	550	Propulsion System Cost		\$0		\$0		\$0		\$0
US\$		Mechanical System Cost	(\$3,000,000		\$4,500,000		\$6,000,000		\$7,500,000
US\$/kW	350	Flectrical System Cost		\$581,538	_	\$1,962,692		\$4,652,308		\$9,086,538
	7.0%	Engineering Cost		\$2 723 500		\$4,806,813		\$9,411,460		\$16 021 738
	3.0%	Program Mgmt Cost		\$1 407 214		\$2 500 971		\$4 712 305		\$7 815 142
vsb/22U	200.000	Installation Days / Cost	6 4	\$1,700,000	8	\$1,600,000	10	\$2,000,000	12	\$7,010,142
03 <i>3/</i> uay	200,000	installation Days / Cost	U ,	,200,000	0	\$1,000,000	10	\$2,000,000	12	Ş2,400,000
_		Total Cast Jacs transport	Ċ(52 204 011		¢120,800,010		6222 002 600		620E 62E 9E1
		Total Cost, less transport	Şt	35,204,011		\$120,890,010		\$255,065,066		\$595,055,651
		Interior Dublic Area (ft 42)		22,000		72.000		128.000		200,000
		Interior Public Area (11-2)		32,000		108,000		128,000		200,000
		Residential Area (11^2)		32,000		108,000		256,000		500,000
_		Total Interior Area (It^2)		64,000		180,000		384,000		700,000
		Cost por square feet		¢000		¢672		\$607		ŚĘĠĘ
		Cost per residence unit		\$500		\$126 E17		\$204 E42		¢267 276
-		cost per residence diff		Ş041,910		\$430,347		Ş394,343		\$307,370
		Percentage Public Area		50.0%		40.0%		33.3%		28.6%
		Percentage Residential		50.0%	_	60.0%		66.7%		71.4%
		l'electridge nesidential		30.070	_	00.070		00.770		71.470
		Appual Crew Cost - moored		\$90,000	_	\$90,000		\$90,000		\$90,000
		Annual Crew Cost - DP		\$450,000	_	\$450,000		\$450,000		\$450,000
_				Ş430,000		\$450,000		\$450,000		Ş 4 30,000
% CanEy	1 00%	Maintenance Cost - moored		\$632.040		\$1 208 000		\$2 330 837		\$3 056 350
% CapEx	1.00%	Maintenance Cost - Moored		\$790.050		\$1,208,300		\$2,330,637		\$1.935,335
	1.23/0	Maintenance Cost - DF		\$750,030		\$1,311,123		\$2,913,340		Ş4, 94J, 440
% CapEy	0.75%	Insurance Cost Liability		¢474.020		\$006 675		¢1 7/0 170		\$2,067,260
% CapEx	0.75%	Insurance Cost - Elability		\$474,030		\$300,075		\$1,748,128		\$2,907,209
70 Capex	0.2370			\$138,010		<i>\$</i> 302,223		<i>\$</i> 382,703		\$989,090
Avgload	E09/	Average Housekeeping kM/		222		749		1 772		2 462
Avg Load	50%	Average Housekeeping kw		002		1 200		1,772		3,462
	70	Average DP Infrusters kw		903		1,288		1,914		2,762
gph/1000kW	72	Annual Fuel Burn - House		139,729		4/1,584		1,117,830		2,183,202
gpn/1000kvv	72	Annual Fuel Burn - DP		607,644		812,323		1,206,955		1,742,238
Fuel Price	\$5.00	Annual Fuel Cost - moored		\$698,644		\$2,357,922		\$5,589,150		\$10,916,308
Fuel Price	\$5.00	Annual Fuel Cost - DP	,	>3,/36,863		\$6,419,536		\$11,623,925		\$19,627,497
		Tatal Appual Cost and a		10 0F2 724		64 OCE 700		610 240 022		610 010 025
		Total Annual Cost - moored		52,052,724		\$4,865,723		\$10,340,823		\$18,919,025
		Total Annual Cost - DP	,	\$5,608,953		\$9,589,561		\$17,318,308		\$28,979,303
_				600.07		40-05				40- 6-
		UpEx per sq-toot - moored		\$32.07		\$27.03		\$26.93		\$27.03
		UpEx per sq-toot - DP		\$87.64		\$53.28		\$45.10		\$41.40
_		OpEx per res. unit - moored		\$20,848		\$17,571		\$17,504		\$17,568
		OpEx per res. unit - DP		\$56,966		\$34,629		\$29,315		\$26,909

Table 6d - One Additional Deck Level – 50% Utilization of Area

		LBP (feet)		200		300		400		500	
		Beam (feet)		200		300		400		500	
		Draft (feet)		70		70		75		80	
		Air Gap (feet)		40		40		40		40	
		Depth (feet)		110		110		115		120	
		Total Hull Volume (ft^3)		476,800		572,800		1,106,440		1,947,480	
US\$/LT	10,000	Hull Steel Cost		\$22,857,143		\$28,000,000		\$54,049,429		\$90,600,714	
US\$/LT	7,000	Deckhouse Cost		\$14,343,750		\$37,968,750		\$77,625,000		\$137,109,375	
US\$/LT	7,000	Main Deck Cost		\$5,500,000		\$12,375,000		\$22,000,000		\$34,375,000	
US\$/pax	50,000	Accommodation Cost		\$12,307,692		\$34,615,385		\$73,846,154		\$134,615,385	
US\$		Mooring System Cost		\$8,000,000		\$14,696,938		\$22,627,417		\$31,622,777	
US\$/kW	550	Propulsion System Cost		\$0		\$0		\$0		\$0	
US\$		Mechanical System Cost		\$3,000,000		\$4,500,000		\$6,000,000		\$7,500,000	
US\$/kW	350	Electrical System Cost		\$1,090,385		\$3,271,154		\$7,269,231		\$13,629,808	
US\$	7.0%	Engineering Cost		\$2,989,063		\$5,484,063		\$10,757,210		\$18,345,956	
US\$	3.0%	Program Mgmt Cost		\$1,521,027		\$2,791,221		\$5,289,055		\$8,811,236	
US\$/day	200,000	Installation Days / Cost	6	\$1,200,000	8	\$1,600,000	10	\$2,000,000	12	\$2,400,000	
		Total Cost, less transport		\$72,809,059		\$145,302,510		\$281,463,496		\$479,010,250	
											_
		Interior Public Area (ft^2)		40,000		90,000		160,000		250,000	
		Residential Area (ft^2)		60,000		180,000		400,000		750,000	
		Total Interior Area (ft^2)		100,000		270,000		560,000		1,000,000	
		Cost per square foot		\$728		\$538		\$503		\$479	
		Cost per residence unit		\$473,259		\$349,802		\$326,699		\$311,357	
		Percentage Public Area		40.0%		33.3%		28.6%		25.0%	
		Percentage Residential		60.0%		66.7%		71.4%		75.0%	
		Annual Crew Cost - moored		\$90,000		\$90,000		\$90,000		\$90,000	
		Annual Crew Cost - DP		\$450,000		\$450,000		\$450,000		\$450,000	
% CapEx	1.00%	Maintenance Cost - moored		\$728,091		\$1,453,025		\$2,814,635		\$4,790,103	
% CapEx	1.25%	Maintenance Cost - DP		\$910,113		\$1,816,281		\$3,518,294		\$5,987,628	
% CapEx	0.75%	Insurance Cost - Liability		\$546,068		\$1,089,769		\$2,110,976		\$3,592,577	
% CapEx	0.25%	Insurance Cost - Hull/Mach		\$182,023		\$363,256		\$703,659		\$1,197,526	
			_			. ,		. ,	_		_
Avg Load	50%	Average Housekeeping kW	_	415		1.246		2,769	_	5,192	_
		Average DP Thrusters kW		1.014		1.365		2.016	_	2.890	_
ph/1000kW	72	Annual Fuel Burn - House		261.991		785.974		1.746.609	_	3.274.892	_
$r_{ph}/1000kW$	72	Annual Fuel Burn - DP	_	639,848		860,630		1,271,364		1.822.749	_
Fuel Price	\$5.00	Annual Fuel Cost - moored	_	\$1,309,957		\$3,929,871	_	\$8,733,046	_	\$16,374,462	
Fuel Price	\$5.00	Annual Fuel Cost - DP	_	\$4,509,199		\$8,233,019	_	\$15,089,867	_	\$25,488,208	
ruerrice	<i>43.00</i>		-	<i>Q</i> 1,303,133		<i>\\</i> 0,233,013	_	<i><i>q</i>13,003,007</i>		<i>\$23,100,200</i>	
		Total Annual Cost - moored	_	\$2,856,138		\$6,925,921		\$14,452,316		\$26,044,667	
		Total Annual Cost - DP		\$6,597,403		\$11.952.325	_	\$21,872,796		\$36.715.939	
				ç0,007,100		<i>Y11,332,32</i> J		<i>~~1,072,73</i> 0		<i>230,1</i> <u>1</u> <i>3,333</i>	
		OpEx per sa-foot - moored		\$28 56		\$25.65		\$ 25 81		\$26.04	
		sper per sq root moored		<i>γ</i> 20.50		<i>γ</i> 23.03		723.01		γ 20.0 -τ	
		OnEx ner sa-foot - DP		\$65 97		¢1/1 27		520 NE		526 72	
_		OpEx per sq-foot - DP	_	\$65.97 \$18 565		\$44.27 \$16.674		\$39.06 \$16.775		\$36.72 \$16 929	

Table 6e – Hi-Density Layout – 85% Utilization of Area

		LBP (feet)		200		300		400		500	
		Beam (feet)		200		300		400		500	
		Draft (feet)		70		70		75		80	
		Air Gap (feet)		40		40		40		40	
		Depth (feet)		110		110		115		120	
		Total Hull Volume (ft^3)		476,800		572,800		1,106,440		1,947,480	
US\$/LT	10,000	Hull Steel Cost		\$22,857,143		\$28,000,000		\$54,049,429		\$90,600,714	
US\$/LT	7,000	Deckhouse Cost		\$20,081,250		\$54,864,844		\$114,750,000		\$206,191,406	
US\$/LT	7,000	Main Deck Cost		\$1,650,000		\$3,712,500		\$6,600,000		\$10,312,500	
US\$/pax	50,000	Accommodation Cost		\$15,692,308		\$47,076,923		\$104,615,385		\$196,153,846	
US\$		Mooring System Cost		\$8,000,000		\$14,696,938		\$22,627,417		\$31,622,777	
US\$/kW	550	Propulsion System Cost		\$0		\$0		\$0		\$0	
US\$		Mechanical System Cost		\$3,000,000		\$4,500,000		\$6,000,000		\$7,500,000	
US\$/kW	350	Electrical System Cost		\$1,235,769		\$4,170,721		\$9,886,154		\$19,308,894	
US\$	7.0%	Engineering Cost		\$3,121,188		\$6,060,414		\$12,277,960		\$21,497,323	
US\$	3.0%	Program Mgmt Cost		\$1,577,652		\$3,038,228		\$5,940,805		\$10,161,822	
US\$/day	200,000	Installation Days / Cost	6	\$1,200,000	8	\$1,600,000	10	\$2,000,000	12	\$2,400,000	
		Total Cost, less transport		\$78,415,309		\$167,720,569		\$338,747,149		\$595,749,283	
		Interior Public Area (ft^2)	_	68,000	_	153,000	_	272,000	_	425,000	
		Residential Area (ft^2)		68,000		229,500		544,000		1,062,500	
		Total Interior Area (ft^2)	_	136,000	_	382,500		816,000		1,487,500	
		Cost per square foot		\$577		\$438		\$415		\$401	
		Cost per residence unit		\$374,779		\$285,015		\$269,835		\$260,327	
		Percentage Public Area		50.0%		40.0%		33.3%		28.6%	
		Percentage Residential		50.0%		60.0%		66.7%		71.4%	
		Annual Crew Cost - moored		\$90,000		\$90,000		\$90,000		\$90,000	
		Annual Crew Cost - DP		\$450,000		\$450,000		\$450,000		\$450,000	
% CapEx	1.00%	Maintenance Cost - moored		\$784,153		\$1,677.206		\$3,387,471		\$5,957,493	
% CapEx	1.25%	Maintenance Cost - DP		\$980,191		\$2,096,507		\$4,234,339		\$7,446.866	
				<i></i>		,_,,,,,,,,,,		, .,,		, . , ,	
% CapEx	0.75%	Insurance Cost - Liability		\$588.115		\$1,257.904		\$2,540.604		\$4,468.120	
% CapEx	0.25%	Insurance Cost - Hull/Mach		\$196,038		\$419,301		\$846,868		\$1,489,373	
P		,				,		,			
Avg Load	50%	Average Housekeeping kW		471		1,589		3,766		7,356	
		Average DP Thrusters kW		963		1,288		1,914		2,762	
gph/1000kW	72	Annual Fuel Burn - House		296.924		1,002.117		2,375.389		4,639.431	
ph/1000kW	72	Annual Fuel Burn - DP		607.644		812.323		1,206.955		1,742.238	
Fuel Price	\$5.00	Annual Fuel Cost - moored		\$1,484.618		\$5,010.585		\$11,876.943		\$23,197.154	
Fuel Price	\$5.00	Annual Fuel Cost - DP		\$4,522.837		\$9,072.199		\$17,911.718		\$31,908.343	
	+1.00			+ .,= 12,007		<i>+-,_,200</i>		<i>,,.</i>		,,,	
		Total Annual Cost - moored		\$3,142,924		\$8,454,997		\$18,741,886		\$35,202,140	
		Total Annual Cost - DP		\$6,737,182		\$13,295,912		\$25,983,529		\$45,762,702	
		OpEx per sq-foot - moored		\$23.11		\$22.10		\$22.97		\$23.67	
		OpEx per sq-foot - DP		\$49.54		\$34.76		\$31.84		\$30.76	
		OpEx per res. unit - moored		\$15,021		\$14,368		\$14,929		\$15,382	
		OpEx per res. unit - DP		\$32.200		\$22.594		\$20.698		\$19.997	

Table 7 – Cost Summary for Ship-Shaped Seastead

Cost Estimate - BASS m	ethod								
LBP (feet)		225.0		450.0		750.0		1050.0	
Beam (feet)		45.0		75.0		105.6		170.0	
Depth (feet)		18.0		26.0		42.0		60.0	
Block Coefficient, Cb		0.65		0.65		0.65		0.65	
Draft (feet)		12.2		18.4		25.5		36.9	
Displacement (LT)		2,292		11,508		37,439		122,351	
Hull Steel Cost		\$4,733,453	9,000	\$19,483,934	7,000	\$56,690,450	6,000	\$162,630,918	6,000
Deckhouse Cost		\$4,533,430	7,000	\$20,188,556	6,000	\$50,659,284	5,000	\$171,262,922	5,000
Accommodation Cost		\$3,972,115		\$17,653,846		\$62,141,538		\$210,080,769	
Mooring System Cost		\$3,022,103		\$8,861,919		\$19,457,703		\$42,849,363	
Propulsion System Cos	t	\$382,848		\$2,623,469		\$7,172,450		\$10,963,565	
Mechanical System Cos	t	\$1,148,544		\$5,246,939		\$14,344,900		\$21,927,129	
Electrical System Cost		\$475,462		\$2,113,165		\$7,438,342		\$25,146,668	
Engineering Cost		\$926,730		\$4,012,844		\$11,864,389		\$38,078,223	
Program Mgmt Cost		\$487,833		\$1,985,648		\$5,668,469		\$17,604,719	
Installation Days / Cost	2	\$400,000	3	\$600,000	5	\$600,000	7	\$1,400,000	2
Total Cost, less transpo	rt	\$20,082,518		\$82,770,320		\$236,037,526		\$701,944,276	
Interior Public Area (ft	`2)	8.606		57.375		134.640		455.175	
Residential Area (ft^2)	,	25.819		114.750		403.920		1.365.525	
Total Interior Area (ft^2	2)	34,425		172,125		538,560		1,820,700	
Cost per square foot		\$583		\$481		\$438		\$386	
Cost per residence unit	:	\$379,191		\$312,568		\$284,879		\$250,598	
Percentage Public Area	1	25.0%		33.3%		25.0%		25.0%	
Percentage Residential		75.0%		66.7%		75.0%		75.0%	
Annual Crew Cost - mo	ored	\$90.000		\$90.000		\$90.000		\$90.000	
Annual Crew Cost - DP		\$375,000		\$450,000		\$450,000		\$450,000	
		<i>+,</i>		<i>•</i>		+,		+	
Maintenance Cost - mo	ored	\$200,825		\$827,703		\$2,360,375		\$7,019,443	
Maintenance Cost - DP		\$251,031		\$1,034,629		\$2,950,469		\$8,774,303	
Insurance Cost Liabilit	·v/	\$150,610		\$620 777		¢1 770 291		¢E 264 E92	
Insurance Cost - Hull/M	.y Iach	\$50,015		\$206.026		\$500.004		\$1,204,302	
		<i>\$</i> 30,200		Ş200, 920		,JJJ0,0J4		Ş1,734,001	
Average Housekeeping	; kW	181		805		2,834		9,580	
Average DP Thrusters k	W	90		225		442		1,046	
Annual Fuel Burn - Hou	se	114,241		507,739		1,787,242		6,042,098	
Annual Fuel Burn - DP		56,505		142,015		278,728		659,742	
Annual Fuel Cost - mod	red	\$571,207		\$2,538,697		\$8,936,212		\$30,210,489	
Annual Fuel Cost - DP		\$853,733		\$3,248,773		\$10,329,849		\$33,509,201	
Total Annual Cost - mor	ored	\$1 062 857		\$4 284 102		\$13 746 962		\$44 339 374	
	licu	\$1 680 580		\$5 561 105		\$16,000,604		\$49 752 047	
		,1000,009		\$3,301,103		Ş10,0 <i>3</i> 0,034		י, גריך, ארך, ארך, ארך, ארך, ארך, ארך, ארך, אר	
OpEx per sq-foot - moo	red	\$30.87		\$24.89		\$25.53		\$24.35	
OpEx per sq-foot - DP		\$48.82		\$32.31		\$29.88		\$27.33	
OpEx per res. unit - mo	ored	\$20,068		\$16,178		\$16,592		\$15,829	
OpEx per res. unit - DP		\$31,732		\$21,001		\$19,420		\$17,762	

Table 8 – Cost Summary for Barge-Shaped Seastead

LBP (feet)		195.0		312.5		625.0		935.0	
Beam (feet)		35.0		75.0		150.0		225.0	
Depth (feet)		15.0		20.0		40.0		60.0	
Block Coefficient, Cb		0.92		0.92		0.92		0.92	
Draft (feet)		6.6		11.4		20.6		30.8	
Displacement (LT)		1,185		7,010		50,876		170,285	
Hull Steel Cost		\$2,796,859	7,000	\$11,264,635	6,000	\$74,219,621	6,000	\$222,621,815	6,000
Deckhouse Cost		\$1,801,136	6,000	\$12,370,439	6,000	\$73,528,583	5,000	\$237,465,396	5,000
Accommodation Cost		\$1,575,000		\$10,817,308		\$86,538,462		\$291,288,462	
Mooring System Cost		\$3,000,000		\$7,296,632		\$19,657,047		\$35,962,432	
Propulsion System Cost	t	\$33,180		\$53,173		\$536,914		\$959,988	
Mechanical System Cos	t	\$99,540		\$106,347		\$1,073,829		\$1,919,976	
Electrical System Cost		\$193,489		\$1,328,906		\$10,631,250		\$35,784,788	
Engineering Cost		\$432,110		\$2,411,667		\$16,400,067		\$52,596,297	
Program Mgmt Cost		\$275,190		\$1,252,470		\$7,618,311		\$23,620,143	
Installation Cost / Days	2	\$400,000	3	\$600,000	5	\$1,000,000	7	\$1,400,000	
Total Cost, less transpo	rt	\$10,606,503		\$47,501,578		\$291,204,083		\$903,619,296	
· · · ·									
Interior Public Area (ft/	`2)	5,119		35,156		210,938		631,125	
Residential Area (ft^2)		10,238		70,313		562,500		1,893,375	
Total Interior Area (ft ²	2)	15,356		105,469		773,438		2,524,500	
Cost per square foot		\$691		\$450		\$377		\$358	
Cost per residence unit		\$448,953		\$292,750		\$244,729		\$232,661	
Percentage Public Area		33.3%		33.3%		27.3%		25.0%	
Percentage Residential		66.7%		66.7%		72.7%		75.0%	
Annual Crew Cost - mo	ored	\$90,000		\$90,000		\$90,000		\$90,000	
Annual Crew Cost - DP		\$225,000		\$225,000		\$225,000		\$225,000	
Maintenance Cost - mo	ored	\$106,065		\$475,016		\$2,912,041		\$9,036,193	
Maintenance Cost - DP		\$132,581		\$593,770		\$3,640,051		\$11,295,241	
Insurance Cost - Liabilit	y	\$79,549		\$356,262		\$2,184,031		\$6,777,145	
Insurance Cost - Hull/N	lach	\$26,516		\$118,754		\$728,010		\$2,259,048	
Average Housekeeping	kW	74		506		4,050		13,632	
Average DP Thrusters k	W	52		196		724		1,590	
Annual Fuel Burn - Hou	se	46,490		319,302		2,554,416		8,598,164	
Annual Fuel Burn - DP		32,629		123,775		456,867		1,003,141	
Annual Fuel Cost - moo	red	\$232,452		\$1,596,510		\$12,772,080		\$42,990,821	
Annual Fuel Cost - DP		\$395,598		\$2,215,387		\$15,056,413		\$48,006,527	
Total Annual Cost - mod	ored	\$534,582		\$2,636,542		\$18,686,162		\$61,153,207	
Total Annual Cost - DP		\$859,245		\$3,509,173		\$21,833,505		\$68,562,962	
OpEx per sq-foot - moo	red	\$34.81		\$25.00		\$24.16		\$24.22	
OpEx per sq-foot - DP		\$55.95		\$33.27		\$28.23		\$27.16	
OpEx per res. unit - mo	ored	\$22,628		\$16,249		\$15,704		\$15,746	
OpEx per res. unit - DP		\$36,370		\$21,627		\$18,349		\$17,653	

Part 2: Platform Performance in Ocean Environment

ENVIRONMENTAL CONDITIONS

Wave Height, Period and Direction

In a land-based community, buildings are constructed on relatively "fixed" foundations that (barring earthquakes, soil subsidence, or other exceptional conditions) do not move in any perceptible way. Seasteads, on the other hand, are intended to float upon the surface of the sea and will consequently move up, down, and sideways in accordance with the undulations of the ocean waves that act upon it. This is true even for submersible seastead configurations unless they are submerged to a sufficient depth below the surface of the sea.

While a certain amount of wave-induced motion is acceptable to most people (and may even be perceived as relaxing and enjoyable to some), excessive motions can cause discomfort and even illness or disability in many people. These factors are discussed in more detail in one of the following sections of this report, entitled *Limiting Motion Criteria*. In the present context, it is sufficient to note that wave conditions that produce motions below a certain threshold are deemed to be acceptable, and that wave conditions that produce more severe motions are problematic.

The exact make-up of any system of ocean waves is random, and as unique as a set of human fingerprints. Because ocean waves are an inherently random process, the only way they can be meaningfully characterized is by using some statistical measure. Even in a gentle, rolling seaway the "height" of every individual wave is different from the one that precedes it and the one that follows it. In stormy seas, the "height" of each individual wave is even more variable, making it all the more challenging to quantify.

Nevertheless, we can characterize the properties of ocean waves by means of widely accepted statistical measures, as described below:

- Wave height the vertical distance from the peak (or crest) of a wave to the trough of the same wave, if you were to observe the wave as it passes a fixed point of reference; because of the random nature of the sea, every individual wave has a unique height.
- Average wave height if you recorded the height of every individual wave at a fixed reference point for a sufficient period of time (15 minutes, for example), the arithmetic average of the individual wave heights would be the "average" wave height. Although this is intuitive, and mathematically correct, the "average" value of wave height does not correlate well with the height that would be "perceived" by a trained observer, such as an experienced mariner.
- Significant wave height instead of taking the average of all individual wave heights, it is customary to take the average of only the highest one-third waves in a sample of wave heights; this so-called "significant wave height" correlates very well with the perceptions of a trained observer, and is the most widely accepted statistical measure. Throughout the rest of this report, references to "wave height" will imply "significant wave height."

Wave height is arguably the most important parameter influencing wave-induced motions, but other characteristics can also have a significant impact. The most problematic vessel motions are vertical and lateral displacements and accelerations that result from heave, pitch and roll, defined as follows:

- Heave the vertical motion occurring at the vessel's center of gravity, usually combined with other components of vertical motion arising from pitch and roll
- Pitch the angular motion that causes the bow and stern to rise and fall in synch with the wave action; vertical motion and acceleration increases in proportion to the distance forward or aft from amidships
- Roll the rhythmic side-to-side angular motion of the vessel; large roll motions can cause discomfort, and can produce lateral accelerations that make people feel off balance

The diagram below illustrates the six-degree-of-freedom motions that a floating vessel may experience.

Motions of a Floating Vessel (Illustration courtesy of Kongsberg Maritime)

Heave, pitch and roll are all oscillatory motions that have an associated natural period, similar to the regular interval of time between the swings of a pendulum in a grandfather clock or the swinging of a child on a playground swing. The so-called "natural period" is the time interval at which an object will oscillate (or swing) without the influence of an external force. Thus, if you pull a child backwards on a swing and then let go, the child will swing back and forth at a time interval (or period) that is solely related to the length of the swing; the pendulum in a clock will do the same. But the child quickly learns to "pump" in an effort to keep the swing moving. If the child does not pump at the proper intervals, the swing will come to a stop; but if the child can pump at just the right interval (at the "natural period" of the swing) then the swing can be made to go higher and higher.

In the example above, the time interval at which the child "pumps" the swing may be thought of as the "period" of the force that the child exerts on the swing. By analogy, the motion of a vessel in the ocean is caused by waves that produce forces on the hull, like the child pumping a swing. Ocean waves occur at various periods, depending on the sea state, and the vessel has its own set of natural periods (for heave, pitch and roll) depending on its geometry and loading.

When the period of the incoming waves coincides with the natural period of one or more of these motions, large displacements and accelerations can occur, like the child pumping a swing at just the right intervals to go higher and higher. Thus, wave period is an important factor in determining a vessel's response to ocean waves; in the most commonly occurring ocean waves, the dominant energy is usually between periods of 8 to 14 seconds. Vessels that have natural

periods of heave, pitch or roll within that range of periods can expect to experience large waveinduced motions.

Typically, the natural periods for heave, pitch and roll motions are all longer than 20 seconds for a semi-submersible. Ocean waves rarely have significant energy in that low frequency band hence semis tend to have very small wave-induced motions. For barges and ship-shaped hulls, the heave and pitch natural periods are generally shorter than 6 to 8 seconds, or slightly shorter than the 8 to 14 second periods that are dominant in ocean waves; thus barge and ship-shapes tend to undulate up and down, following the surface of the waves. However, natural periods for roll motions of ships and barges are generally in the range of 8 to 18 seconds, coincident with the periods of maximum wave excitation. Thus, barges and ship-shaped hulls are highly susceptible to synchronous response, which can induce large roll amplitudes and high lateral accelerations.

Like wave height, wave period must also be characterized statistically, but a simplistic model will suffice in the present context. If you were to observe a series of waves passing a fixed point of reference, and record the interval of time between passages of each successive wave crest, the arithmetic average of these time intervals would correspond to the "average wave period," or simply "wave period" for the purposes of this report.

Wave directionality is also an important factor for barges and ship-shaped hulls, especially if the orientation of a seastead results in waves striking the ship along the side (so-called "beam seas"), which can produce large roll motions. This suggests the desirability of dynamic positioning or some form of turret mooring for these vessels that will allow them to face into incoming waves, thereby minimizing exposure to beam sea conditions. For a semi-submersible hull, wave directionality is not as significant because of its relatively benign wave response characteristics.

Wave height and wave period statistics are commonly presented in the form of bi-variate probability distributions, as depicted in the following Tables 1a and 1b, representing an open ocean site in the North Atlantic and a near coastal site in the vicinity of Hawaii. These sites are illustrative of relatively severe and relatively benign deep-ocean conditions, respectively.

The values within each cell of the matrix represent the percent probability of occurrence for each combination of wave height (refer to the left side of the table) and wave period (refer to the top row of the table); thus, for example, wave heights between 3 and 4 meters having a period of about 12.4 seconds would be expected to occur about 3.7 percent of the time.

Annual Wave Statistics for North Atlantic - 58.3 N, 12.3 W

N = 13,303 Samples

Significant Wave Ht.		Modal Wave Period (seconds)] [Wave Height	Cumulative Probability		
(meters)	3.2	4.8	6.3	7.5	8.8	9.7	10.5	12.4	13.8	15.0	16.4	18.0	20.0	22.5	25.7	F	Probabilty	(%)
16 - 20													0.001				0.00	100.00
14 - 16												0.05	0.05	0.001			0.10	100.00
12 - 14											0.05	0.2	0.05	0.001			0.30	99.90
10 - 12										0.05	0.3	0.4	0.05	0.001			0.80	99.60
9 - 10									0.05	0.1	0.4	0.3	0.05	0.001	0.001		0.90	98.80
8 - 9									0.2	0.7	0.4	0.3	0.05	0.001	0.001		1.65	97.89
7 - 8								0.1	0.9	0.8	0.7	0.3	0.05	0.015	0.001		2.87	96.24
6 - 7								1.1	1.2	1.2	0.7	0.3	0.05	0.015	0.001		4.57	93.38
5 - 6							0.5	3.0	1.8	1.4	0.6	0.3	0.05	0.015	0.001		7.67	88.81
4 - 5						0.5	3.5	4.1	1.4	1.2	0.6	0.3	0.2	0.020			11.82	81.14
3 - 4					0.7	3.8	3.7	3.7	1.2	1.1	0.7	0.2	0.2	0.020			15.32	69.32
2 - 3				1.3	4.8	4.4	3.2	2.7	1.6	1.4	0.6	0.2	0.3				20.50	54.00
1 - 2		0.2	2.0	3.9	3.1	3.2	2.5	2.5	1.3	1.4	0.6	0.2	0.4				21.30	33.50
0 - 1	0.4	0.3	1.8	1.9	1.3	2.0	1.6	1.5	0.4	0.5	0.4		0.1				12.20	12.20
																_		
	0.40	0.50	3.80	7.10	9.90	13.90	15.00	18.70	10.05	9.85	6.05	3.05	1.61	0.09	0.01	< \	Nave Per	iod
																, E	Probability	y (%)
Wavelength	16	36	62	88	121	147	172	240	297	351	420	506	624	790	1031			
(meters)																		

Table 1a - Wave Height and Wave Period Probabilities in the North Atlantic Ocean

Table 1b - Wave Height and Wave Period Probabilities off the Coast of Hawaii

A convenient way to visualize the relative wave severity at these two locations is a graph of the cumulative probability distributions (the right-hand column in Tables 1a and 1b), as shown below in Figure 1. The vertical scale indicates the probability that waves will be *less than* the height indicated along the horizontal axis. For example, in the North Atlantic, wave height will be less than 6 meters about 90 percent of the time; hence waves will be greater than 6 meters almost 10 percent of the time. By comparison, off the coast of Hawaii, the wave height will be less than 6 meters virtually 100 percent of the time; thus, almost never more than 6 meters.

The graph below depicting conditions off the coast of Hawaii approaches 100 percent at about 5 meters, thus we might deduce that to be nearly the maximum wave height at that location; however, Table 1b indicates that waves of 11 meters or more can occur, albeit in very rare instances. Similarly, the graph below appears to reach 100 percent at about 11 meters for the

North Atlantic, whereas Table 1a indicates that waves as high as 16 to 20 meters will occur on rare occasion. (Recall that these are significant wave heights; maximum individual waves are typically almost twice the significant wave height.)

Reading across the graph at the 90 percent level indicates the so-called 90th percentile wave height; that is, the wave height that will be exceeded 10 percent of the time. Off the coast of Hawaii, the 90th percentile wave height is a bit less than 3 meters, whereas in the North Atlantic the graph indicates the 90th percentile is nearly 6 meters, or about twice as high.

Figure 1 – Comparison of Wave Height Cumulative Probability in Two Locations (Note: Significant Wave Height is shown above in meters)

While the data shown in Figure 1 is useful for comparing the relative severity of two or more discrete locations, it is useful to consider the oceans of the world on a more holistic scale. Shown in Figure 2 is an image that The Seasteading Institute has prepared in conjunction with its ongoing location study, aimed at identifying the most promising locations for seasteads worldwide. Figure 2 illustrates the 90th percentile significant wave height around the world; note that colorations in the North Atlantic and the mid-Pacific are consistent with the values indicated in Figure 1, as discussed in the preceding paragraph.

Significant Wave Height Meters, 90th Percentile

Figure 2 – Worldwide 90th Percentile Significant Wave Heights (meters) Note: Blackened spaces along coast lines represent areas of missing data

Wind Speed and Current Speed

Whereas wave characteristics are important in the evaluation of vessel motions, it is wind speed and current speed that are of primary importance with regards to station-keeping, or maintaining a seastead in its desired location. Wind and current create drag forces on the hull and deckhouse of a seastead; it is these forces that must be overcome to keep the seastead in its desired location.

For a moored seastead, it is the maximum (roughly the 99th percentile) wind and current speeds that are of interest, because the corresponding forces will determine the required strength of the mooring system.

By contrast, a dynamically positioned seastead must continually consume energy to power the thrusters that keep it in position. The average thruster power (and hence the average rate of fuel consumption for dynamic positioning) is related to the average wind and current speeds; that is, to the 50th percentile of each. However, similar to a moored seastead, the maximum wind and current is also important, because the thruster system must be capable of developing sufficient thrust to keep the seastead in position during severe storm conditions. (While some within the seastead community have suggested the idea of "lazy" positioning, i.e., letting the vessel meander from its nominal position, this analysis has taken the position that a seastead should always be able to control its location, so as not to present a potential hazard to other vessels in the vicinity.)

Depictions for wind speed and current speed (50^{th} and 99^{th} percentile) are shown in the following Figures 3a - 3b and 4a - 4b, respectively. Based on subjective evaluation of these figures, the selection of an average 20-knot (10-m/s) wind speed and a 1-knot (0.5-m/s) current speed used in this analysis is justified. Certainly the design of a seastead intended for a specific site should be based on the environmental characteristics (waves, wind, and current) that are appropriate to that location.

Water Depth

For a dynamically-positioned seastead, water depth is of no particular consequence from the standpoint of design and cost, because the vessel relies on thrusters rather than anchors to maintain position. However, for a moored seastead, water depth has important implications related to the cost of the mooring system. As noted in Part 1 of this report, at a nominal depth of 1,000 feet, the cost of anchor line represents about 60% of the total cost of a mooring system and anchor line cost increases linearly with increased water depth. Therefore, each additional 1,000-foot increment of water depth represents about a 60% increase in the capital cost of a mooring system.

Water depths throughout the world are depicted in Figure 5, which is an excerpt from the ongoing location study project (http://www.seasteading.org/wp-content/uploads/2012/03/Seasteading_Location_Study.pdf).

Wind Speed Meters per second (50th Percentile)

Wind Speed Meters per second (99th Percentile)

Figure 3b – Worldwide 99th Percentile of Wind Speed (meters per second)

Currents

Meters per Second, 50th Percentile

Legend World Borders Currents, meters per second High : 1.24 Low : 0.01

Currents Meters per Second, 99th Percentile

World Borders

Low : 0.01

Figure 4b – Worldwide 99th Percentile of Current Speed (meters per second)

Bathymetry

Figure 5 – Worldwide Water Depths (meters) Note: Ocean depth appears as "negative elevation" above sea level

MOTION AMPLITUDES IN VARIOUS SEA CONDITIONS

General Approach

Graphs comparing significant motion amplitudes for roll, vertical acceleration and lateral acceleration are shown in Figures 6a, 6b, and 6c for the three ship lengths considered in this analysis: 1050', 750' and 450' respectively. Likewise, graphs for the three barge configurations are shown in Figures 7a, 7b, and 7c for lengths of 935', 625' and 312' respectively. A similar set of graphs for the three semi-submersible configurations (300'x300', 400'x400' and 500'x500') is shown in Figure 8; note, however, that the ring semi-submersible is very nearly axisymmetric, therefore the motion responses are virtually the same for all headings.

The values shown in these graphs were computed with the aid of sophisticated hydrodynamic software that models the three-dimensional geometry of the vessel's hull and the time-varying pressures within the waves as they pass by the hull. From the specified geometry and weight distribution for each configuration, the software computes how strongly the hull will respond to waves of varying frequency and direction; recall that (like a child on a swing) the amplitude of response will be greatest when the wave period coincides with one of the natural periods of the hull. The response characteristics of each vessel are then combined with a mathematical model of the energy in each of the seas conditions considered to obtain the values illustrated in each of the graphs. This requires a prodigious amount of computation, using software that has been verified by comparison with scale model tests for a wide variety of hull forms.

Each graph shows a series of curves, corresponding to different ship headings relative to the waves. Beam seas (waves approaching the ship directly from the side) are equivalent to a heading of 90 degrees, i.e., waves approaching from a direction perpendicular to the centerline of the ship. Other headings are likewise defined in terms of degrees from the centerline of the ship.

Referring to the topmost graph in Figure 6a, for example, the curve for *Beam Seas* indicates that the ship would roll about five degrees to either side of the vertical in a 4-meter wave height. However, at a wave heading of 45 degrees it would require a 5-meter wave height to produce the same roll angle. Moreover, if the wave heading were 30 degrees, it would take a wave height of 6 meters to produce the same 5-degree roll. Thus, it is apparent that as the ship becomes more aligned with the waves (closer to a "head sea" condition) the roll motion diminishes.

Graphs in the middle and bottom of Figure 6a illustrate similar trends with respect to vertical and lateral acceleration at the forward, outboard corner of the deckhouse. Each set of three graphs (one "set" for each seastead configuration) provides a transformation between the ship's motion response at various headings and the wave heights required to produce those responses.

Ship-Shaped Configurations

Figure 6a – Motion Amplitudes Versus Wave Height for 1050' Ship-Shaped Seastead

Figure 6b – Motion Amplitudes Versus Wave Height for 750' Ship-Shaped Seastead

Figure 6c – Motion Amplitudes Versus Wave Height for 450' Ship-Shaped Seastead

Barge-Shaped Configurations

Figure 7a – Motion Amplitudes Versus Wave Height for 935' Barge-Shaped Seastead

Figure 7b – Motion Amplitudes Versus Wave Height for 625' Barge-Shaped Seastead

Figure 7c – Motion Amplitudes Versus Wave Height for 312' Barge-Shaped Seastead

Semi-Submersible Configurations

Figure 8 – Motion Amplitudes Versus Wave Height for Semi-Submersible Seasteads

OPERATIONAL LIMITS AND PERFORMANCE ASSESSMENT

Limiting Motion Criteria

Establishing quantitative values for how much motion an individual can tolerate is problematic, to say the least. Recalling a visit to any amusement park will put the issue into context; some individuals not only tolerate but actually relish the whipsaw accelerations and non-stop spins of the wildest rides, while other folks may get a queasy feeling just from watching. In a report (http://www.seasteading.org/files/research/TSI/engineering/Feb2011_Report_p1.pdf) prepared by The Seasteading Institute last year, Eelco Hoogendoorn briefly discusses the issue, with reference to limits on roll amplitude, vertical acceleration, and lateral acceleration.

These motion responses are potentially disturbing in the following way:

- Roll amplitude when a vessel rolls, the deck "tips" to some angle with respect to the horizontal. If roll amplitude is excessive, it can cause items to slide off of tables and it can cause people to lose their balance.
- Vertical acceleration anyone who has ridden in an elevator that started or stopped too quickly has experienced the discomfort that large vertical accelerations can cause. More extreme is the sensation that one experiences when an airplane encounters turbulence and a sudden loss of altitude; large vertical accelerations can be very uncomfortable, even if they occur rarely. But when up-and-down vertical motion occurs continuously, even moderate accelerations can cause discomfort.
- Lateral acceleration the forces that push you into the seatback of an airplane during takeoff or cause your torso to lurch forward upon landing are caused by large lateral accelerations. On a floating vessel or seastead, large lateral accelerations are usually associated with a short natural period (around 10 seconds or less) in roll; this is often referred to as a "snap roll", meaning the hull lurches from side to side very quickly.

Guidelines published by the International Towing Tank Conference (ITTC) based on ISO 2631 are used as the basis for the limiting motion criteria assumed in this analysis. These guidelines set forth tolerance limits for seasickness and fatigue due to long-term (several hours) exposure to oscillatory motions. They also specify levels of sudden acceleration that cause increased risk of injury due to loss of balance.

Mode of Motion	Comfort Limit	Endurance Limit
Roll, degrees from vertical	4	8
Vertical acceleration, G's	0.1	0.2
Lateral acceleration. G's	0.075	0.15

Based on the ITTC guidelines, the following motion limits have been adopted for this analysis:

Motions that exceed the "comfort" limit for an extended period of time are likely to produce seasickness or fatigue in the majority, whereas motions that exceed the endurance limit are more likely to cause loss of balance and possible injury.

For each of these limiting criteria, the corresponding limiting wave height is obtained for each seastead configuration, utilizing the graphs shown in the preceding section. Then, based on the wave statistics for a particular area, the probability of exceeding the limiting wave height is determined. The corresponding probability of *not* exceeding the limiting wave height then becomes the "operability" of the vessel for any particular wave heading scenario. The tables below illustrate the process, assuming each vessel is exposed to an equal probability of waves from all directions.

	Operability	and Per	formance	based on	wave con	ditions in	Hawaii - /		
	450' ship	750' ship	1050' ship	312' barge	625' barge	935' barge	300' semi	400' semi	500' semi
Roll Amplitude - Comfort	98.8%	99.7%	98.6%	36.1%	71.1%	96.1%	99.8%	99.8%	99.9%
Vert. Accel - Comfort	99.8%	99.8%	99.8%	78.2%	70.5%	83.3%	99.8%	99.8%	99.9%
Lat. Accel Comfort	99.8%	99.8%	88.2%	50.3%	34.2%	42.0%	99.8%	99.8%	99.9%
Roll Amplitude - Endurance	99.8%	99.8%	99.8%	93.5%	98.8%	99.8%	100.0%	100.0%	100.0%
Vert. Accel - Endurance	100.0%	100.0%	100.0%	99.8%	99.7%	99.8%	100.0%	100.0%	100.0%
Lat. Accel Endurance	100.0%	100.0%	99.8%	98.6%	97.8%	98.8%	100.0%	100.0%	100.0%
	Operability	and Per	formance	based on	wave con	ditions in	North Atl	antic - An	nual
	450' ship	750' ship	1050' ship	312' barge	625' barge	935' barge	300' semi	400' semi	500' semi
Roll Amplitude - Comfort	76.3%	85.9%	81.1%	36.3%	49.6%	65.8%	95.5%	97.5%	98.6%
Vert. Accel - Comfort	88.4%	96.5%	91.4%	52.8%	49.3%	55.5%	95.5%	97.5%	98.6%
Lat. Accel Comfort	95.4%	93.9%	58.6%	41.3%	35.6%	38.4%	95.5%	97.5%	98.6%
Boll Amplitude - Endurance	02.00/	07.6%	05.8%	62.8%	76.3%	88.0%	99.9%	100.0%	100.0%
Non Ampirtude - Lindurance	95.970	97.070	95.670	02.070	70.570	00.070	55.570	100.070	100.070
Vert. Accel - Endurance	99.9%	100.0%	99.9%	95.2%	87.0%	92.3%	99.9%	100.0%	100.0%

Note: the tables above assume an equal probability of all wave headings

It is clear that the barge shapes are clearly unsuitable under any circumstances in the severe conditions of the North Atlantic, and fail to meet the "comfort" criteria even in the relatively benign waters off the coast of Hawaii. The ship-shaped configurations satisfy the "endurance" criteria in both areas, but fail to meet the "comfort" criteria in the North Atlantic. Not surprisingly, the semi-submersible configuration meets the criteria almost 100% of the time off the coast of Hawaii, and more than 95% of the time in the North Atlantic.

Dynamic Positioning Versus Mooring

Using the capital cost estimates for mooring systems given in Part 1 of this report, the mooring costs for various size semi-submersibles in a range of water depths is shown in the table below.

It is noted that these figures do not include the cost of anchor handling tugs, a service which would be required each time the seastead was moved.

		Baseline		Total Capital C	ost for Increas	ed Water Dept	h
		Cost for					
Size		1000	2000	3000	4000	5000	6000
		Depth					
200'x200'		\$8,000,000	\$12,960,000	\$17,920,000	\$22,880,000	\$27,840,000	\$32,800,000
equipment	40%	\$3,200,000					
anchor line	60%	\$4,800,000					
300'x300'		\$14,696,938	\$23,809,040	\$32,921,142	\$42,033,244	\$51,145,346	\$60,257,448
equipment	40%	\$5,878,775					
anchor line	60%	\$8,818,163					
400'x400'		\$22,627,417	\$36,656,416	\$50,685,414	\$64,714,413	\$78,743,411	\$92,772,410
equipment	40%	\$9,050,967					
anchor line	60%	\$13,576,450					
500'x500'		\$31,622,777	\$51,228,898	\$70,835,020	\$90,441,141	\$110,047,263	\$129,653,384
equipment	40%	\$12,649,111					
anchor line	60%	\$18,973,666					

Mooring Costs for Semi-Submersibles in a Range of Water Depth

Dynamic positioning systems provide both station-keeping and mobility; based only on station-keeping, and using the fuel consumption estimates given in Part 1 of this report, the total yearby-year cost for dynamic positioning of the same size semi-submersibles is shown in the table below.

	DP	DP		Total Capital Cost plus Fuel Cost at the End of Each Year							
Size	Initial	Annual	Year	Year	Year	Year	Year				
	Cost	Fuel Cost	1	2	3	4	5				
200'x200'	\$12,000,000	\$3,900,000	\$15,900,000	\$19,800,000	\$23,700,000	\$27,600,000	\$31,500,000				
300'x300'	\$14,000,000	\$7,000,000	\$21,000,000	\$28,000,000	\$35,000,000	\$42,000,000	\$49,000,000				
400'x400'	\$16,000,000	\$13,000,000	\$29,000,000	\$42,000,000	\$55,000,000	\$68,000,000	\$81,000,000				
500'x500'	\$18,000,000	\$22,000,000	\$40,000,000	\$62,000,000	\$84,000,000	\$106,000,000	\$128,000,000				

Dynamic Positioning Costs for Semi-Submersibles

Comparison of the two tables indicates that the total costs are about equal after five years, for water depths of up to 5,000 or 6,000 feet depending on the size of the semi-submersible. In depths shallower than 5,000 feet, mooring is the cheaper alternative unless the vessel is to be moved frequently.

Note that the annual fuel costs for dynamic positioning are based on an average 1-knot current and a 20-knot wind speed. Cost for fuel will vary roughly as the square of increases or decreases in wind and current speed. Similar trends would be expected for ship-shaped and barge-shaped seastead configurations.

CONCLUSIONS AND RECOMMENDATIONS

PART 1:

- 1. Based on results obtained in this analysis, there are significant economies of scale that can be achieved; most notably, CapEx costs per square foot for the "Very Small" seasteads considered are disproportionately higher than those for the larger sizes of semi-submersibles and barges, although not so much for ship-shaped seasteads. OpEx costs per square foot for "Very Small" seasteads are disproportionately higher for all configurations.
- 2. In terms of size, the "sweet-spot" is the so-called "Small" seastead, i.e., the 300'x300' semi, 450' ship or 312' barge; beyond those sizes, economies of scale (on a per square foot basis) begin to level off, while the absolute costs increase substantially. This size range would accommodate residences for about 200 to 400 people (based on a nominal 300 square foot per person); changing the per-person allocation of living space would increase of decrease the capacity in direct proportion, but would not significantly alter the cost per square foot.
- 3. The principal components of OpEx that can be controlled by design decisions relate to energy consumption and manning; particularly with regard to the choice between mooring and dynamic positioning (DP). Specifically, the use of a DP system will require a larger number of crewmembers and substantially greater fuel consumption. The greater mobility offered by a DP system should be weighed carefully against the increased cost compared to mooring; and it is further noted that mooring systems are quite suitable in water depths as great as 2,000 meters or more.
- 4. On the basis of this analysis, the following recommendations are offered:
 - Quantify the potential cost-benefits of alternative energy, such as wind, solar and waveenergy conversion
 - Identify other measures to reduce energy consumption requirements
 - Select a most-likely baseline configuration for an early seastead and develop a preliminary design in sufficient detail to get cost quotes from potential builders

PART 2:

- 1. Barge-shaped hulls appear to be suitable only for relatively benign or protected waters.
- 2. Semi-submersibles are the most tolerant hull configurations for severe wave conditions.
- 3. Ship-shaped seasteads appear to offer a desirable compromise between comfort and cost.
- 4. In water depths up to 6,000 feet, a fixed mooring system appears to offer cost advantages compared to dynamic positioning, unless the seastead is to be moved more frequently than once in five years.